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Abstract

Evolutionary algorithms provide flexibility and robustness required to find
satisfactory solutions in complex search spaces. This is why they are success-
fully applied for solving real engineering problems. In this work we propose
an algorithm to evolve a robust speech representation, using a dynamic data
selection method for reducing the computational cost of the fitness compu-
tation while improving the generalisation capabilities. The most commonly
used speech representation are the mel-frequency cepstral coefficients, which
incorporate biologically inspired characteristics into artificial recognizers. Re-
cent advances have been made with the introduction of alternatives to the
classic mel scaled filterbank, improving the phoneme recognition performance
in adverse conditions.

In order to find an optimal filterbank, filter parameters such as the central
and side frequencies are optimised. A hidden Markov model is used as the
classifier for the evaluation of the fitness for each individual. Experiments
were conducted using real and synthetic phoneme databases, considering
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different additive noise levels. Classification results show that the method
accomplishes the task of finding an optimised filterbank for phoneme recog-
nition, which provides robustness in adverse conditions.

Keywords:

Automatic speech recognition, evolutionary computation, phoneme
classification, cepstral coefficients

1. Introduction1

Automatic speech recognition (ASR) systems require a preprocessing2

stage to emphasize the key features of phonemes, thereby allowing an im-3

provement in classification results. This task is usually accomplished using4

one of several different signal processing techniques such as filterbanks, linear5

prediction or cepstrum analysis [1]. The most popular feature representation6

currently used for speech recognition is mel-frequency cepstral coefficients7

(MFCC) [2]. MFCC is based on a linear model of voice production together8

with the codification on a psychoacoustic scale.9

However, due to the degradation of recognition performance in the pres-10

ence of additive noise, many advances have been conducted in the devel-11

opment of alternative noise-robust feature extraction techniques. Moreover,12

some modifications to the biologically inspired representation were intro-13

duced in recent years [3, 4, 5, 6]. For instance, Slaney introduced an al-14

ternative [7] to the feature extraction procedure. Skowronski and Harris15

[8, 9] introduced the human factor cepstal coefficients (HFCC), consisting in16

a modification to the mel scaled filterbank. They reported results showing17

considerable improvements over the MFCC. The weighting of MFCC accord-18

ing to the signal-to-noise ratio (SNR) on each mel band was proposed in [10].19

For the same purpose, the use of Linear Discriminant Analysis in order to20

optimise a filterbank has been studied in [11]. In other works the use of evolu-21

tive algorithms have been proposed to evolve features for the task of speaker22

verification [12, 13]. Similarly, in [14] an evolutive strategy was introduced23

in order to find an optimal wavelet packet decomposition.24

Then, the question arises if any of these alternatives is really optimal for25

this task. In this work we employ an evolutionary algorithm (EA) to find26

a better speech representation. An EA is an heuristic search algorithm in-27

spired in nature, with proven effectiveness on optimisation problems [15]. We28

propose a new approach, called evolved cepstral coefficients (ECC), in which29

2



Page 3 of 30

Acc
ep

te
d 

M
an

us
cr

ip
t

Figure 1: General scheme of the proposed method.

an EA is employed to optimise the filterbank used to calculate the cepstral30

coefficients (CC). The ECC approach is schematically outlined in Figure 1.31

To evaluate the fitness of each individual, we incorporate a hidden Markov32

model (HMM) based phoneme classifier. The proposed method aims to find33

an optimal filterbank, meaning that it results in a speech signal parameter-34

isation which improves standard MFCC on phoneme classification results.35

Prior to this work, we obtained some preliminary results, which have been36

reported in [16].37

A problem arises in this kind of optimisation because over-training might38

occur and resulting filterbanks could highly depend on the training data39

set. This problem could be overcome by increasing the amount of data,40

though, much more time or computational power would be needed for each41

experiment. In this work, instead, we incorporate a training subset selection42

method similar to the one proposed in [17]. This strategy enables us to train43

filterbanks with more patterns, allowing generalisation without increasing44

computational cost.45

This paper is organized as follows. First we introduce some basic con-46

cepts about EAs and give a brief description of mel-frequency cepstral coef-47

ficients. Subsequently, the details of the proposed method are described and48

its implementation is explained. In the last sections, the results of phoneme49

recognition experiments are provided and discussed. Finally, some general50

conclusions and proposals for future work are given.51

1.1. Evolutionary algorithms52

Evolutionary algorithms are search methods based on the Darwinian the-53

ory of biological evolution [18]. This kind of algorithms present an implicit54

parallelism that may be implemented in a number of ways in order to increase55

the computational speed [14]. Usually an EA consists of three operations:56
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selection, variation and replacement [19]. Selection gives preference to bet-57

ter individuals, allowing them to continue to the next generation. The most58

common variation operators are crossover and mutation. Crossover com-59

bines information from two parent individuals into offspring, while mutation60

randomly modifies genes of chromosomes, according to some probability, in61

order to maintain diversity within the population. The replacement strat-62

egy determines which of the current members of the population, should be63

replaced by the new solutions. The population consists of a group of indi-64

viduals whose information is coded in the so-called chromosomes, and from65

which the candidates are selected for the solution of a problem. Each in-66

dividual performance is represented by its fitness. This value is measured67

by calculating the objective function on a decoded form of the individual68

chromosome (called the phenotype). This function simulates the selective69

pressure of the environment. A particular group of individuals (the parents)70

is selected from the population to generate the offspring by using the vari-71

ation operators. The present population is then replaced by the offspring.72

The EA cycle is repeated until a desired termination criterion is reached73

(for example, a predefined number of generations, a desired fitness value,74

etc.). After the evolution process the best individual in the population is the75

proposed solution for the problem [20].76

1.2. Mel-frequency cepstral coefficients77

Mel-frequency cepstral coefficients are the most commonly used alterna-78

tive to represent speech signals. This is mainly because the technique is79

well-suited for the assumptions of uncorrelated features used for the HMM80

parameter estimation. Moreover, MFCC provide superior noise robustness81

in comparison with the linear-prediction based feature extraction techniques82

[21].83

The voice production model commonly used in ASR assumes that the84

speech signal is the output of a linear system. This means that the speech85

is the result of a convolution of an excitation signal, x(t), with the impulse86

response of the vocal tract model, h(t),87

y(t) = x(t) ∗ h(t), (1)

where t stands for continuous time. In general only y(t) is known, and it is88

frequently desirable to separate its components in order to study the features89

of the vocal tract response h(t). Cepstral analysis solves this problem by90

4
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Figure 2: Magnitude spectrums of the excitation signal X(f) and the vocal tract impulse
response H(f) from simulated voiced phonemes.

taking into account that if we compute the Fourier transform (FT) of (1)91

then the equation in the frequency domain is a product:92

Y (f) = X(f)H(f), (2)

where variable f stands for frequency, X(f) is the excitation spectrum and93

H(f) is the vocal tract frequency response. Then, by computing the loga-94

rithm from (2), this product is converted into a sum, and the real cepstrum95

C(t) of a signal y(t) is computed by:96

C(t) = IFT{loge |FT{y(t)}|}, (3)

where IFT is the inverse Fourier transform. This transformation has the97

property that its components, which were nonlinearly combined in time do-98

main, are linearly combined in the cepstral domain. This type of homomor-99

phic processing is useful in ASR because the rate of change of X(f) and100

H(f) are different from each other (Figure 2). Because of this property,101

the excitation and the vocal tract response are located at different places102

in the cepstral domain, allowing them to be separated. This is useful for103

classification because the information of phonemes is given only by H(f).104

In order to combine the properties of the cepstrum and the results about105

human perception of pure tones, the spectrum of the signal is decomposed106

into bands according to the mel scale. This scale was obtained through hu-107

man perception experiments and defines a mapping between the physical108

frequency of a tone and the perceived pitch [1]. The mel scaled filterbank109

(MFB) is comprised of a number of triangular filters whose center frequencies110

are determined by means of the mel scale. The magnitude spectrum of the111

signal is scaled by these filters, integrated and log compressed to obtain a log-112

energy coefficient for each frequency band. The MFCC are the amplitudes113
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Figure 3: Mel scaled filterbank in the frequency range from 0 to 8kHz.

resulting from applying the IFT to the resulting sequence of log-energy co-114

efficients [22]. However, because the argument of the IFT is a real and even115

sequence, the computation is usually simplified with the cosine transform116

(CT). Figure 3 shows a MFB comprised of 26 filters in the frequency range117

from 0 to 8 kHz. As it can be seen, endpoints of each filter are defined118

by the central frequencies of adjacent filters. Bandwidths of the filters are119

determined by the spacing of filter central frequencies which depend on the120

sampling rate and the number of filters. That is, if the number of filters121

increases, the number of MFCC increases and the bandwidth of each filter122

decreases.123

2. MATERIALS AND METHODS124

This section describes the proposed evolutionary algorithm, the speech125

data and the preprocessing method. First, the details about the speech126

corpus are given and the ECC method is explained. In the next subsection127

some considerations about the HMM based classifier are discussed and finally128

the data selection method for resampling training is explained.129

2.1. Speech corpus and processing130

For the experimentation, both synthetic and real phoneme databases have131

been used. In the first case, five Spanish vowels were modelled using the clas-132

sical linear prediction coefficients [1], which were obtained from real utter-133

ances. We have generated different train, test and validation sets of signals134

which are 1200 samples in length and sampled at 8 kHz. Every synthetic135

utterance has a random fundamental frequency, uniformly distributed in the136

range from 80 to 250 Hz. In this way we simulate both male and female137

speakers. First and second resonant frequencies (formants) were randomly138
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Figure 4: Synthetic phoneme database. a) First and second formant frequency distribu-
tion. b) Phoneme examples.

modified, within the corresponding ranges, in order to generate phoneme139

occurrences.140

Our synthetic database included the five Spanish vowels /a/, /e/, /i/,141

/o/ and /u/, which can be simulated in a controlled manner.142

Figure 4 shows the resulting formant distribution and some synthetic143

phoneme examples. White noise was generated and added to all these syn-144

thetic signals, so that the SNR of each signal is random and it varies uniformly145

from 2 dB to 10 dB. As these vowels are synthetic and sustained, the frames146

were extracted using a Hamming window of 50 milliseconds length (400 sam-147

ples). The use of a synthetic database allowed us to maintain controlled148

experimental conditions, in which we could focus on the evolutive method,149

designed to capture the frequency features of the signals while disregarding150

temporal variations.151

Real phonetic data was extracted from the TIMIT speech database [23].152

Speech signals were selected randomly from all dialect regions, including both153

male and female speakers. Utterances were phonetically segmented to obtain154

individual files with the temporal signal of every phoneme occurrence. White155

noise was also added at different SNR levels. In this case, the sampling fre-156

quency was 16 kHz and the frames were extracted using a Hamming window157

of 25 milliseconds (400 samples) and a step-size of 200 samples. All possible158

frames within a phoneme occurrence were extracted and padded with zeros159

where necessary. The English phonemes /b/, /d/, /eh/, /ih/ and /jh/ were160

considered. The occlusive consonants /b/ and /d/ are included because they161
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are very difficult to distinguish in different contexts. Phoneme /jh/ presents162

special features of the fricative sounds. Vowels /eh/ and /ih/ are commonly163

chosen because they are close in the formant space. This group of phonemes164

was selected because they constitute a set of classes which is difficult to165

classify [24].166

For simplicity we introduced the steps for the computation of CC in the167

continuous time and frequency domains. Although, in practice we use digital168

signals and the discrete versions of the transforms mentioned in Section 1.2.169

For both MFCC and ECC the procedure is as follows. First, the spectrum170

of the frame is normalised and integrated by the triangular filters, and every171

coefficient resulting from integration is then scaled by the inverse of the172

area of the corresponding filter. As in the case of Slaney’s filterbank [7], we173

give equal weight to all coefficients because this is shown to improve results.174

Then the discrete cosine transform (DCT) is computed from the log energy175

coefficients. As the number of filters nf in each filterbank is not fixed, we set176

the number of output DCT coefficients to [nf/2] + 1.177

2.2. Evolutionary cepstral coefficients178

The MFB shown in Figure 3, commonly used to compute cepstral coeffi-179

cients, reveals that the search for an optimal filterbank can involve adjusting180

several of its parameters, such as: shape, amplitude, position and size of each181

filter. However, trying to optimise all the parameters together is extremely182

complex, so we decided to maintain some of the parameters fixed.183

We carried out this optimisation in two different ways. In the first case,184

we considered non-symmetrical triangular filters, determined by three param-185

eters each. These three parameters correspond to the frequency values where186

the triangle for the filter begins, where the triangle reaches its maximum, and187

where it ends. This is depicted in Figure 5, where the mentioned parameters188

are called ai, bi and ci respectively. They are coded in the chromosome as189

integer values, indexing the frequency samples. The size and overlap between190

filters are left unrestricted in this first approach. The number of filters was191

also optimised by adding one more gene to the chromosome (nf in Figure192

5). This last element in the chromosome indicates that the first nf filters are193

currently active. Hence, the length of each chromosome is three times the194

maximum number of filters allowed in a filterbank, plus one.195

In a second approach, we decided to reduce the number of optimisation196

parameters. Here, triangular filters were distributed along the frequency197

8
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Figure 5: Scheme of the chromosome codification.

band, with the restriction of half overlapping. This means that only the cen-198

tral positions (parameters ci in Figure 5) were optimised, and the bandwidth199

of each filter was adjusted by the preceding and following filters. In this case,200

the number of filters was optimised too.201

In other approaches [13], polynomial functions were used to encode the202

parameters which were optimised. Here, in contrast, all the parameters are203

directly coded in the chromosome. In this way the search is simpler and the204

parameters are directly related to the features being optimised.205

Each chromosome represents a different filterbank, and they are initialized206

with a random number of active filters. In the initialization, the position of207

the filters in a chromosome is also random and follows a discrete uniform208

distribution over the frequency bandwidth from 0 Hz to half the sampling209

frequency. The position, determined in this way, sets the frequency where210

the triangle of the filter reaches its maximum. Then, in the case of the three-211

parameter filters, a binomial distribution centred on this position is used to212

initialize the other two free parameters of the filter.213

Before variation operators are applied, the filters in every chromosome214

are sorted by increasing order with respect to their central position. A chro-215

mosome is coded as a string of integers and the range of values is determined216

by the number of samples in the frequency domain.217

The EA uses the roulette wheel selection method [25], and elitism is218

incorporated into the search due to its proven capabilities to enforce the219

algorithm’s convergence under certain conditions [18]. The elitist strategy220

consists in maintaining the best individual from one generation to the next221

without any perturbation. The variation operators used in this EA are mu-222

tation and crossover, and they were implemented as follows. Mutation of a223

filter consists in the random displacement of one of its frequency parameters,224

and this modification is made using a binomial distribution. This mutation225

operator can also change, with the same probability, the number of filters in226

a filterbank. Our one-point crossover operator interchanges complete filters227

between different chromosomes. Suppose we are applying the crossover op-228

9
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erator on two parents, for instance A and B. Then, if parent B contains more229

active filters than parent A, the crossover point is a random value between 1230

and the nf value of parent A. All genes (filters and nf) beyond that point in231

either chromosome string are swapped between the two parents, resulting in232

an offspring with the same nf of the first parent and an offspring with the233

same nf of the second parent.234

The selection of individuals is also conducted by considering the filterbank235

represented by a chromosome. The selection process should assign greater236

probability to the chromosomes providing the better signal representations,237

and these will be those that obtain better classification results. The proposed238

fitness function consists of a phoneme classifier, and the recognition rate will239

be the fitness value for the individual being evaluated.240

2.3. HMM based classifier241

In order to compare the results to those of state of the art speech recog-242

nition systems, we used a phoneme classifier based on HMM with Gaussian243

mixtures (GM). This fitness function uses tools from the HMM Toolkit [26]244

for building and manipulating hidden Markov models. These tools rely on245

the Baum-Welch algorithm [27] which is used to find the unknown parame-246

ters of an HMM, and on the Viterbi algorithm [28] for finding the most likely247

state sequence given the observed events in the recognition process.248

Conventionally, the energy coefficients obtained from the integration of249

the log magnitude spectrum are transformed by the DCT to the cepstral250

domain. Besides the theoretical basis given on Section 1.2, this has the effect251

of removing the correlation between adjacent coefficients. Moreover, it also252

reduces the feature dimension.253

Even though DCT has a fixed kernel and cannot decorrelate the data as254

thoroughly as data-based transforms [29], MFCC are close to decorrelated.255

The DCT produces nearly uncorrelated coefficients [30], which is desirable for256

HMM based speech recognizers using GM observation densities with diagonal257

covariance matrices [31].258

2.4. Dynamic subset selection for training259

A problem in evolutionary optimisation is that it requires enormous com-260

putational time. Usually, fitness evaluation takes the most time since it re-261

quires the execution of some kind of program against problem specific data.262

In our case, for instance, we need to train and test an HMM based classifier263

using a phoneme database. This implies that the time for the evolution is264

10
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Figure 6: Scheme of the dynamic subset selection method.

proportional to the size of the data needed for fitness evaluation, as well as265

the population size and the number of generations. On the other hand, the266

data used for fitness evaluation dramatically influences the generalisation ca-267

pability of the optimised solution. Hence, there is a trade off between the268

generalisation capability and the computational time.269

In this work we propose the reduction of computational costs and the270

improvement of generalisation capability by evolving filterbank parameters271

on a selected subset of train and test patterns, which is changed during272

each generation. The idea of active data selection in supervised learning was273

originally introduced by Zhang et al. for efficient training of neural networks274

[32, 33]. Motivated by this work, Gathercole et al. introduced some training275

subset selection methods for genetic programming [17]. These methods are276

also useful in evolutionary optimisation, allowing us to significantly reduce277

the computation time while improving generalisation capability.278

While in [17] only one training data set was considered, our subset se-279

lection method consists in changing the test subset, as well as the training280

subset, in every generation of the EA. For the test set, the idea is to focus281

the EA attention onto the cases that were mostly misclassified in previous282

generations and the cases that were not used recently.283

In order to illustrate this, an example with two classes of two-dimensional284

patterns is outlined in Figure 6. The subset is selected from the original data285

set according to the classification results. The algorithm randomly selects286

a number of cases from the whole training and test sets every generation,287

and a test case has more probability to be selected if it is difficult or has not288

been selected for several generations. Another difference with the method289

proposed in [17] is that the size of test and train subsets remains strictly the290

same for all generations. In the first generation the testing subset is selected291

assigning the same probability to all cases. Then, during generation g, a292

weight Wi(g) is determined for each test case i. This weight is the sum of293

11
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the current difficulty of the case, Di(g), raised to the power d, and the age294

of the case, Ai(g), raised to the power a,295

Wi(g) = Di(g)
d + Ai(g)

a. (4)

The difficulty of a test case is given by the number of times it was mis-296

classified and its age is the number of generations since it was last selected.297

Exponents d and a determine the importance given to difficult and unse-298

lected cases respectively. Given the sample size and other characteristics of299

the training data, these parameters are empirically determined. Each test300

case is given a probability Pi(g) of being selected. This probability is given301

by its weight, multiplied by the size of the selected subset, S, and divided by302

the sum of the weights of all the test cases:303

Pi(g) =
Wi(g) ∗ S∑

j Wj(g)
. (5)

When a test case i is selected, its age Ai is set to 1 and, if it is not selected,304

its age is incremented. While evaluating the EA population, difficulty Di is305

incremented each time the case i is misclassified.306

However, a problem arises when using an elitist strategy together with this307

method. As train and test subsets change, the best individual at a given time308

may no longer be the best one for the next generation. Although, probably it309

is still a good individual, we decided to maintain the best chromosome from310

the previous generation and assign the classification result from the current311

subset as its fitness.312

3. Results and discussion313

3.1. Synthetic Spanish phonemes314

We conducted different EA runs and we found the best results when we315

evolved only the central filter positions and the number of filters, which we316

allowed to vary from 17 to 32. For the EA, the population size was set to 100317

individuals and crossover rate was set to 0.8. The mutation rate, meaning318

the probability of a filter to have one of its parameters changed, was set to319

0.1.320

During the EA runs we used a set of 500 training signals and a different set321

of 500 test signals to compute the fitness for every individual. In this case,322

training and testing sets remained unchanged during the evolution. Each323

12
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FB # filters # coeff
Validation test
DCM FCM

EFB 1 17 9 95 .20 97.00
EFB 2 18 10 95.40 96 .80
EFB 3 18 10 93.00 96 .40
EFB 4 17 9 94.60 96.20
MFB 23 13 94.80 96.20
MFB 17 9 93.00 95.20

run was terminated after 100 generations without any fitness improvement.324

When a run was finished, we took the twenty best filterbanks according to325

their fitness, and we made a validation test with another set of 500 signals.326

From this validation test we selected the two best filterbanks, discarding those327

that were over-optimised (those with higher fitness but with lower validation328

result).329

Table 1 summarizes the validation results for filterbanks from two dif-330

ferent optimisations, and includes the classification results obtained using331

the standard MFB on the same data sets. The fourth column contains the332

classification results obtained when using an HMM with diagonal covariance333

matrices (DCM), and the fifth column contains the results obtained when us-334

ing an HMM with full covariance matrices (FCM). Evolved filterbanks (EFB)335

1 and 2 were obtained using HMM with DCM as fitness during the optimi-336

sation, while EFBs 3 and 4 were obtained using HMM with FCM. It can be337

observed that we obtained filterbanks that perform better than MFB when338

using FCM-HMM. Also, it is important to notice that MFB also performs339

better using FCM-HMM.340

Figure 7 shows these four EFBs. One feature they all have in common is341

the high density of filters from approximately 500 to 1000 Hz, which could be342

related to the distribution of the first frequency formant (Figure 4). More-343

over, considering the second formant frequency, it can be noticed that these344

groups of filters could distinguish phonemes /o/ and /u/ from the others.345

Another common trait in these four filterbanks is that the frequency range346

from 0 to 500 Hz is covered by only two filters, although, in EFB 3 there is347

a narrow filter from 0 to 40 Hz, besides these two. This narrow filter isolates348

the peaks at zero frequency from the phoneme information. Another likeness349
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Figure 7: Filterbanks optimised for phonemes /a/, /e/, /i/, /o/ and /u/ from our synthetic
database.

is that, in the band from approximately 1000 to 2500 Hz, the four filterbanks350

show similar filter distribution. On the other hand, a feature which is present351

only in the second filterbank is the attention given to high frequencies, as352

opposed to MFB, and taking higher formants into account.353

3.2. Real English phonemes354

In the second group of experiments the best results were obtained when355

considering non-symmetrical triangular filters, determined by three param-356

eters each. Also in this case, the number of filters in the filterbanks was357

allowed to vary from 17 to 32. For the fitness computation we used a dy-358

namic data partition of 1000 training signals and 400 test signals, and an359

HMM based classifier with FCM. The data partition used during the EA360

runs was changed every generation according to the strategy described in361

Section 2.4, and phoneme samples were dynamically selected from a total of362

6045 signals available for training and 1860 signals available for testing. As363

mentioned in Section 2.4, some preliminary experiments were carried out in364

order to set difficulty and age exponents (parameters d and a in equation365

4). Given the sample size and using different combinations, we found that a366

good choice is to set both parameters d and a to 1.0.367

As in the experiments with synthetic phonemes, a EA run was ended368
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tTable 2: Classification rates for English phonemes (percent). Average over ten train/test

partitions. Filterbanks optimised at 0 dB SNR.

FB # filters # coeff -5dB 0dB 20dB clean Diff
A0 32 17 24.76 32.62 58.26 65.54 0.44
A1 17 9 20.26 26.02 62.16 62.62 −9.68
A2 21 11 20.16 21.34 59.56 60.00 −19.68
A3 29 15 24.34 32.92 66.08 64.32 6.92
A4 19 10 20.38 26.32 63.64 61.22 −9.18
A5 19 10 20.52 26.24 60.62 60.26 −13.10
A6 21 11 31.10 35.78 61.52 60.80 8.46
A7 29 15 22.58 30.52 63.90 64.58 0.84
A8 25 13 22.94 30.76 62.10 62.08 −2.86
A9 22 12 23.60 31.54 63.54 66.14 4.08

MFB 23 13 20.00 23.18 68.40 69.16

after 100 generations without any fitness improvement, and we took the ten369

best filterbanks according to their fitness. The settings for the parameters of370

the EA were also the same values given in Section 3.1. We made validation371

tests with ten different data partitions consisting of 2500 train patterns and372

500 test patterns each. Moreover, these validation tests were made using test373

sets at different SNR levels.374

Here we show the classification results of filterbanks obtained from three375

EA runs which only differ in the noise level used for train and test sets for the376

fitness computation. Table 2 shows average classification results comparing377

filterbanks optimised for signals at 0 dB SNR against standard MFB, using378

DCM-HMM. We tested the best ten EFBs at different SNR, always training379

the classifier with clean signals. Each one of these results were obtained as380

the average of the classification with ten different data partitions. The last381

column gives the accumulated difference between each of the first ten rows382

and the last row, the higher values indicate the best filterbanks. For example,383

in Table 2, we obtain the value 0.44 in the first row by adding the difference384

of the values from column 4 to column 7 in the first row, from those in row385

11. As the number of filters is one of the optimised parameters, we compare386

all the EFBs against a MFB composed of 23 filters, which is a standard setup387

in speech recognition. It can be seen that when testing at −5 and 0 dB SNR388

the EFB A6 performs much better than MFB. From this we can assume that389

the distribution of filters in EFB A6 allows to distinguish better the formant390
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tTable 3: Classification rates for English phonemes (percent). Average over ten train/test

partitions. Filterbanks optimised at 20 dB SNR.

FB # filters # coeff -5dB 0dB 20dB clean Diff
B0 20 11 20.04 22.24 62.30 63.06 −13.10
B1 19 10 22.18 30.06 53.76 64.12 −10.62
B2 22 12 22.44 30.24 60.68 64.96 −2.42
B3 19 10 21.38 27.84 68.08 67.80 4.36
B4 19 10 21.10 26.72 62.40 64.52 −6.00
B5 19 10 22.06 34.54 55.56 64.46 −4.12
B6 18 10 20.22 31.92 68.44 66.64 6.48
B7 19 10 22.88 31.98 64.44 67.26 5.82
B8 18 10 21.58 27.90 64.04 61.88 −5.34
B9 19 10 22.82 31.08 64.28 68.04 5.48

MFB 23 13 20.00 23.18 68.40 69.16

frequencies from the noise frequency components. This means that the use391

of the evolved filterbank results in features which are more robust than the392

standard parameterisation.393

The same comparison is made in Tables 3 and 4 for filterbanks optimised394

using signals at 20 dB SNR and clean signals respectively. Again, we can see395

that some EFBs perform considerably better than the MFB with noisy test396

signals, and there is even an improvement at 20 dB SNR in these cases.397

From these three groups of EFBs we selected some of the best EFBs and398

further tested them at 5, 10, 15 and 30 dB SNR. The average results from ten399

data partitions can be found in Table 5, as well as the results for the MFB,400

HFCC and Slaney filterbanks. For the HFCC 30 filters were considered,401

one filter was added to the filterbank proposed in [34] because the sampling402

frequency used in our experiments is higher. The bandwiths of the filters403

in HFCC are controlled by a parameter called E-factor, which was set to 5,404

based on the recognition results shown in [34]. As suggested, the first 13405

cepstral coefficients were considered. The Slaney filterbank was comprised406

of 40 filters, as proposed in [7], and 20 cepstral coefficients were computed.407

It can be seen that the EFBs perform better than the standard MFB408

when the SNR in testing signals is lower than the SNR in the training sig-409

nals. Moreover, EFB C4 and EFB B6 outperform the Slaney filterbank in all410

noise conditions considered except in the case of −5 dB SNR. On the other411

hand, the EFBs perform better than the HFCC filterbank at the lower SNRs,412
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tTable 4: Classification rates for English phonemes (percent). Average over ten train/test

partitions. Filterbanks optimised for clean signals.

FB # filters # coeff -5dB 0dB 20dB clean Diff
C0 21 11 20.56 27.94 64.14 63.48 −4.62
C1 18 10 20.08 34.20 61.26 60.66 −4.54
C2 19 10 20.28 27.74 62.62 60.72 −9.38
C3 18 10 21.94 30.32 62.70 64.36 −1.42
C4 18 10 20.56 36.88 69.82 68.08 14.60
C5 18 10 22.26 30.42 65.14 63.40 0.48
C6 19 10 20.30 30.16 64.82 62.62 −2.84
C7 18 10 20.16 30.66 63.22 61.96 −4.74
C8 18 10 26.52 33.56 56.62 64.00 −0.04
C9 18 10 20.40 26.68 66.88 66.22 −0.56

MFB 23 13 20.00 23.18 68.40 69.16

this is from −5 dB to 15 dB SNR. These improvements may be better visu-413

alized in Figure 8, where it is easy to appreciate that EFB C4 outperforms414

MFB in the range from 0 dB to 15 dB SNR. It can be seen that MFB is415

not outperformed for 30 dB SNR and clean signals, however this behaviour416

is common to most robust ASR methods [35]. For instance, the HFCC fil-417

terbank outperform MFB for noisiest cases, however, above 20 dB SNR the418

improvements are smaller. Moreover, the degradation of recognition perfor-419

mance is proportional to the mismatch between the SNR of the training set420

and the SNR of the test set [36, 4].421

Figure 9 shows the selected EFBs from Table 5. As we stated before,422

one feature they all have in common is the wide bandwidth of most of the423

filters, compared with the MFB. This coincides with the study in [34] about424

the effect of wider filter bandwidth on noise robustness. In all the EFBs we425

can also see high overlapping between different filters, as there was not any426

constraint about this in the optimisation. However, this high overlapping427

which results in correlated CC could be beneficial for classification with full428

covariance matrix HMM. We can observe the grouping of a relatively high429

number of filters in the frequency band from 0 Hz to 4000 Hz in the case of430

EFB C4, which gives the best results for noisy test signals.431

In order to analyse what information these representations are captur-432

ing, we recovered an estimate of the short-time magnitude spectrum using433

the method proposed in [37]. Which consists in scaling the spectrogram of434
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tTable 5: Classification rates for English phonemes (percent). Average over ten train/test

partitions.

FB -5dB 0dB 5dB 10dB 15dB 20dB 30dB clean
A3 24.34 32.92 37.68 46.36 52.98 66.08 65.04 64.32
A6 31.10 35.78 44.38 46.88 53.12 61.52 60.36 60.80
B6 20.22 31.92 55.12 67.20 68.84 68.44 67.20 66.64
B7 22.88 31.98 36.86 44.42 49.64 64.44 67.58 67.26
C4 20.56 36.88 60.30 68.32 68.70 69.82 67.42 68.08
C5 22.26 30.42 34.38 44.32 57.28 65.14 63.52 63.40

MFB 20.00 23.18 37.90 44.68 51.42 68.40 69.80 69.16
HFCC 20.24 25.98 47.26 62.78 67.68 70.54 69.42 70.36
Slaney 29.94 30.28 36.44 54.76 60.66 62.02 61.52 62.78
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Figure 8: Performance of the best EFBs compared with MFB (English phonemes).

a white noise signal by the short-time magnitude spectrum recovered from435

the cepstral coefficients. Figures 10 and 11 show the spectrograms of sen-436

tence SI648 from TIMIT corpus, with additive noise at 50 dB and 10 dB437

SNR respectively. Figure 10 shows that wide filters of the EFB blur energy438

coefficients along the frequency axis, and it is more difficult to notice the439

formant frequencies, though this information is not lost. Moreover, phoneme440

classification is made easier by removing information related to pitch. On the441

other hand, from Figure 11 it can be seen that when the signal is noisy, the442

relevant information is clearer in the spectrogram reconstructed from ECC.443

This is because the filter distribution and bandwidths of EFB C4 allow the444

relevant information on higher frequencies to be conserved, which is hidden445

by noise when using MFCC.446
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Figure 9: Filterbanks optimised for phonemes /b/, /d/, /eh/, /ih/ and /jh/ from TIMIT
database.

Table 6 exhibits the confusion matrices for MFB and EFB C4, obtained447

when testing with signals at 10 and 15 dB SNR. From these matrices, it can448

be seen that phonemes /eh/ and /ih/ are mostly misclassified using MFB449

and they are frequently well classified using EFB C4. In fact, when the SNR450

is high, the performance in the classification of each of the five phonemes is451

similar for both MFB and EFB C4. However, the lower the SNR, the more452

MFB fails to classify phonemes /eh/ and /ih/. These are mostly confused453

with phonemes /b/ and /d/, while the success rate for phonemes /b/, /d/454

and /jh/ is barely affected. On the other hand, when using EFB C4 the effect455

of noise degrades the success rate for all phonemes uniformly, but none of456

them are as confused as in the case of MFB. That is, not only the average of457

success rate is higher, but also the variance between phonemes is lower. This458

means that the evolved filterbank provides a more robust parameterisation459

as it achieves better classification results in the presence of noise.460
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tTable 6: Confusion matrices. Average classification rates (percent) from ten data parti-

tions.
MFB EFB C4

/b/ /d/ /eh/ /ih/ /jh/ /b/ /d/ /eh/ /ih/ /jh/

1
5
d
B

/b/ 64.7 34.8 00.0 00.0 00.5 56.9 39.7 01.8 01.4 00.2
/d/ 11.7 83.2 00.0 00.1 5.00 14.1 79.9 00.6 00.9 04.5
/eh/ 33.1 51.0 05.0 07.1 03.8 03.9 04.5 73.5 18.1 00.0
/ih/ 21.8 45.3 04.7 18.9 09.3 12.6 09.9 18.2 59.3 00.0
/jh/ 00.1 14.6 00.0 00.0 85.3 00.3 25.3 00.2 00.3 73.9

Avg: 51.42 Avg: 68.70

1
0
d
B

/b/ 55.4 44.0 00.0 00.0 00.6 48.8 48.6 01.5 00.5 00.6
/d/ 07.4 89.2 00.0 00.0 30.4 08.2 86.4 00.0 00.0 05.4
/eh/ 25.6 70.6 00.0 00.0 30.8 03.7 06.5 77.4 12.4 00.0
/ih/ 13.5 68.6 00.0 00.0 17.9 09.1 10.3 22.9 57.7 00.0
/jh/ 00.0 21.2 00.0 00.0 78.8 00.2 28.3 00.0 00.2 71.3

Avg: 44.68 Avg: 68.32

3.3. Statistical dependence of ECC461

As we mentioned in Section 2.3, MFCC are almost uncorrelated and are462

suitable for the utilization of HMM. However, this assumption of weak sta-463

tistical dependence may not be true for the ECC. As Figure 9 shows, filter464

bandwidth and overlapping is usually higher for the optimised filterbanks465

than MFB. This means that the energy coefficients contain highly redun-466

dant information, and DCT may not be enough to obtain near decorrelated467

coefficients in this case. In fact, we have studied and compared the statisti-468

cal dependence of MFCC and ECC, and noticed that optimised coefficients469

show, in general, higher correlation. Figure 12 shows the correlation matri-470

ces of 10 cepstral coefficients computed over 1500 frames. In order to make471

this comparison, we used a MFB consisting on 18 filters, the same num-472

ber of filters in the optimised filterbank named C4. Correlation coefficients473

corresponding to MFB are shown on top and those corresponding to the op-474

timised filterbank C4 at the bottom. As can be seen, correlation matrices475

show high statistical dependence between cepstral coefficients corresponding476

to phonemes /eh/ and /ih/, and this is much more noticeable for the case477

of the evolved filterbank. In order to obtain a measure of the statistical478

dependence, the sum of the correlation coefficients for each phoneme was479

obtained. These values can be seen on Table 7, and they were computed as480 ∑
i

∑
j |Mi,j| − trace(|M |), where M is the matrix of correlation coefficients.481

From these values we can also see that ECC are more correlated than the482
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Figure 10: Spectrograms for sentence SI648 from TIMIT corpus at 50dB SNR. Computed
from the original signal (top), reconstructed from MFCC (middle) and reconstructed from
ECC (bottom).

MFCC for the set of phonemes we have considered.483

The statistical dependence which is present in ECC implies that GM484

observation densities with diagonal covariance matrices (DCM) may not be485

the best option. Hence we decided to use full covariance matrices instead, to486

model the observation density functions during the optimisation. Moreover,487

as the MFCC are not completely decorrelated, they also allowed the classifier488

to perform better when using full covariance matrices (FCM) (See Table 1).489

4. Conclusion and future work490

A new method has been proposed for evolving a filterbank, in order to491

produce a cepstral representation that improves the classification of noisy492

speech signals. Our approach successfully exploits the advantages of evolu-493

tionary computation in the search for an optimal filterbank. Free parameters494
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Figure 11: Spectrograms for sentence SI648 from TIMIT corpus at 10dB SNR. Computed
from the original signal (top), reconstructed from MFCC (middle) and reconstructed from
ECC (bottom).

and codification provided a wide search space, which was covered by the algo-495

rithm due to the design of adequate variation operators. Moreover, the data496

selection method for resampling prevented the overfitting without increasing497

computational cost.498

The obtained representation provides a new alternative to classical ap-499

proaches, such as those based on a mel scaled filterbank or linear prediction,500

and may be useful in automatic speech recognition systems. Experimental re-501

sults show that the proposed approach meets the objective of finding a more502

robust signal representation. This approach facilitates the task of the classi-503

fier because it properly separates the phoneme classes, thereby improving the504

classification rate when the test noise conditions differ from the training noise505

conditions. Moreover, with the use of this optimal filterbank the robustness506
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Figure 12: Correlation matrices of MFCC (top) and ECC (bottom).

Table 7: Sum of correlation coefficients.

/b/ /d/ /eh/ /ih/ /jh/
MFB 20.9 24.9 30.4 27.2 11.2

C4 28.8 27.5 33.1 45.5 32.2

of an ASR system can be improved with no additional computational cost.507

These results also suggest that there is further room for improvement over508

the psychoacoustic scaled filterbank.509

In future work, the utilisation of other search methods, such as particle510

swarm optimisation and scatter search will be studied. Different variation511

operators can also be considered as a way to improve the results of the512

EA. Moreover, the search for an optimal filterbank could be carried out by513

evolving different parameters. The possibility of replacing the HMM based514

classifier by another objective function, in order to reduce computational515

cost, will also be studied. In particular, we will consider fitness functions516

which incorporate information such as the gaussianity and the correlation of517

the coefficients, as well as the class separability.518
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Figure 13: Leandro Daniel Vignolo.
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Figure 16: John C. Goddard.
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